

Micromega Corporation 1 Revised 2005-06-21

Using uM-FPU V2
with the Javelin Stamp™

Introduction
The uM-FPU is a 32-bit floating point coprocessor that can be easily interfaced with the Javelin Stamp™ to provide
support for 32-bit IEEE 754 floating point operations and 32-bit long integer operations. The uM-FPU supports both
I2C and 2-Wire SPI connections.

uM-FPU V2 Features
 8-pin integrated circuit.
 I2C compatible interface up to 400 kHz
 SPI compatible interface up to 4 Mhz
 32 byte instruction buffer
 Sixteen 32-bit general purpose registers for storing floating point or long integer values
 Five 32-bit temporary registers with support for nested calculations (i.e. parentheses)
 Floating Point Operations

 Set, Add, Subtract, Multiply, Divide
 Sqrt, Log, Log10, Exp, Exp10, Power, Root
 Sin, Cos, Tan, Asin, Acos, Atan, Atan2
 Floor, Ceil, Round, Min, Max, Fraction
 Negate, Abs, Inverse
 Convert Radians to Degrees, Convert Degrees to Radians
 Read, Compare, Status

 Long Integer Operations
 Set, Add, Subtract, Multiply, Divide, Unsigned Divide
 Increment, Decrement, Negate, Abs
 And, Or, Xor, Not, Shift
 Read 8-bit, 16-bit, and 32-bit
 Compare, Unsigned Compare, Status

 Conversion Functions
 Convert 8-bit and 16-bit integers to floating point
 Convert 8-bit and 16-bit integers to long integer
 Convert long integer to floating point
 Convert floating point to long integer
 Convert floating point to formatted ASCII
 Convert long integer to formatted ASCII
 Convert ASCII to floating point
 Convert ASCII to long integer

 User Defined Functions can be stored in Flash memory
 Conditional execution
 Table lookup
 Nth order polynomials

 Connecting the uM-FPU

Micromega Corporation 2 Using uM-FPU with the Javelin Stamp

Pin Diagram and Pin Description

CS

SOUT

SCLK/SCL

VSS

VDD

TSTIN

TSTOUT

SIN/SDA

1

2

3

4

8

7

6

5

uM-FPU

V2

Pin Name Type Description
1 CS Input Chip Select
2 SOUT Output SPI Output

Busy/Ready
3 SCLK

SCL
Input SPI Clock

I2C Clock
4 VSS Power Ground
5 SIN

SDA
Input
In/Out

SPI Input
I2C Data

6 TSTOUT Output Test Output
7 TSTIN Input Test Input
8 VDD Power Supply Voltage

Connecting uM-FPU V2 to the Javelin Stamp using 2-wire SPI

The uM-FPU requires just two pins for interfacing to the Javelin Stamp. The communication is implemented using a
bidirectional serial interface that requires a clock pin and a data pin. The default setting for these pins are:

final static int DATA_PIN = CPU.pin14;
final static int CLOCK_PIN = CPU.pin15;

The settings for these pins can be changed to suit your application. The support routines assume that the uM-FPU
chip is always selected, so CLOCK_PIN and DATA_PIN should not be used for other connections as this will likely
result in loss of synchronization between the Javelin Stamp and the uM-FPU coprocessor.

 Connecting the uM-FPU

Micromega Corporation 3 Using uM-FPU with the Javelin Stamp

Connecting uM-FPU V2 to the Javelin Stamp using I2C
The uM-FPU V2 can also be connected using an I2C interface. The default slaveID for the uM-FPU is $C8. The
default settings for the I2C pins is:

final static int DATA_PIN = CPU.pin0;
final static int CLOCK_PIN = CPU.pin1;

The settings for these pins can be changed to suit your application.

 An Introduction to the uM-FPU

Micromega Corporation 4 Using uM-FPU with the Javelin Stamp

An Introduction to the uM-FPU
The following section provides an introduction to the uM-FPU using Javelin methods for all of the examples.
For more detailed information about the uM-FPU, please refer to the following documents:

uM-FPU V2 Datasheet functional description and hardware specifications
uM-FPU V2 Instruction Set full description of each instruction

uM-FPU Registers
The uM-FPU contains sixteen 32-bit registers, numbered 0 through 15, which are used to store floating point or
long integer values. Register 0 is reserved for use as a temporary register and is modified by some of the uM-
FPU operations. Registers 1 through 15 are available for general use. Arithmetic operations are defined in terms
of an A register and a B register. Any of the 16 registers can be selected as the A or B register.

uM-FPU Registers

 0 32-bit Register
 1 32-bit Register

A 2 32-bit Register
 3 32-bit Register
 4 32-bit Register

B 5 32-bit Register
 6 32-bit Register
 7 32-bit Register
 8 32-bit Register
 9 32-bit Register
 10 32-bit Register
 11 32-bit Register
 12 32-bit Register
 13 32-bit Register
 14 32-bit Register
 15 32-bit Register

The FADD instruction adds two floating point values and is defined as A = A + B. To add the value in register 5
to the value in register 2, you would do the following:

 Select register 2 as the A register
 Select register 5 as the B register
 Send the FADD instruction (A = A + B)

We’ll look at how to send these instructions to the uM-FPU in the next section.

Register 0 is a temporary register. If you want to use a value later in your program, store it in one of the
registers 1 to 15. Several instructions load register 0 with a temporary value, and then select register 0 as the B
register. As you will see shortly, this is very convenient because other instructions can use the value in register
0 immediately.

Sending Instructions to the uM-FPU
Appendix A contains a table that gives a summary of each uM-FPU instruction, and enough information to
follow the examples in this document. For a detailed description of each instruction, refer to the document
entitled uM-FPU Instruction Set.

To send instructions to the uM-FPU the Fpu.startWrite, Fpu.write, and Fpu.stop methods are used
as follows:

Fpu.startWrite();
Fpu.write(Fpu.FADD+5);

 An Introduction to the uM-FPU

Micromega Corporation 5 Using uM-FPU with the Javelin Stamp

Fpu.stop();

The Fpu.startWrite and Fpu.stop methods are used to indicate the start and end of a write transfer. A
write transfer will often consist of several instructions and data. Up to 32 bytes can be sent in a single write
transfer. If more then 32 bytes are required, the Fpu.wait method must be called to wait for the uM-FPU to
be ready before starting another write transfer and sending more instructions and data.

The Fpu.write method can have up to four parameters. Each parameter is an 8-bit value that represents an
instruction or data to be sent to the uM-FPU. All instructions start with an opcode that tells the uM-FPU which
operation to perform. The Fpu class contains definitions for all of the uM-FPU V2 opcodes. Some instructions
require additional data or arguments, and some instructions return data. The most common instructions (the
ones shown in the first half of the table in Appendix A), require a single byte for the opcode. For example:

Fpu.write(Fpu.SQRT);

The instructions in the last half of the table, are extended opcodes, and require a two byte opcode. The first byte
of extended opcodes is defined as XOP. To use an extended opcode, you send the XOP byte first, followed by
the extended opcode. For example:

Fpu.write(Fpu.XOP, Fpu.ATAN);

Some of the most commonly used instructions use the lower 4 bits of the opcode to select a register. This allows
them to select a register and perform an operation at the same time. Opcodes that include a register value are
defined with the register value equal to 0, so using the opcode by itself selects register 0. The following
command selects register 0 as the B register then calculates A = A + B.

Fpu.write(Fpu.FADD);

To select a different register, you simply add the register value to the opcode. The following command selects
register 5 as the B register then calculates A = A + B.

Fpu.write(Fpu.FADD+5);

Let’s look at a more complete example. Earlier, we described the steps required to add the value in register 5 to
the value in register 2. The command to perform that operation is as follows:

Fpu.write(Fpu.SELECTA+2, Fpu.FADD+5);

Description:
SELECTA+2 select register 2 as the A register
FADD+5 select register 5 as the B register and calculate A = A + B

It’s a good idea to use constant definitions to provide meaningful names for the registers. This makes your
program code easier to read and understand. The same example using constant definitions would be:

final static int Total = 2 // total amount (uM-FPU register)
final static int Count = 5 // current count (uM-FPU register)

Fpu.startWrite();
Fpu.write(Fpu.SELECTA+Total, Fpu.FADD+Count);
Fpu.stop();

Selecting the A register is such a common occurrence that the SELECTA opcode was defined as 0x00, so
SELECTA+Total is the same as just using Total by itself. Using this shortcut, line above would be replaced
with:

Fpu.write(Total, Fpu.FADD+Count);

 Tutorial Example

Micromega Corporation 6 Using uM-FPU with the Javelin Stamp

Tutorial Example
Now that we’ve introduced some of the basic concepts of sending instructions to the uM-FPU, let’s go through
a tutorial example to get a better understanding of how it all ties together. This example will take a temperature
reading from a DS1620 digital thermometer and convert it to Celsius and Fahrenheit.

Most of the data read from devices connected to the Javelin Stamp will return some type of integer value. In this
example, the interface routine for the DS1620 reads a 9-bit value and stores it in an integer variable called
rawTemp on the Javelin Stamp. The value returned by the DS1620 is the temperature in units of 1/2 degrees
Celsius. We need to load this value to the uM-FPU and convert it to floating point. The following commands
are used:

Fpu.write(DegC, Fpu.LOADWORD);
Fpu.writeWord(rawTemp);
Fpu.write(Fpu.FSET);

Description:
DegC select DegC as the A register
LOADWORD select register 0 as the B register, load 16-bit value and convert to floating point
rawTemp send 16-bit value
FSET DegC = register 0

The uM-FPU register DegC now contains the value read from the DS1620 (converted to floating point). Since
the DS1620 works in units of1/2 degree Celsius, DegC will be divided by 2 to get the degrees in Celsius.

Fpu.write(Fpu.LOADBYTE, 2, Fpu.FDIV);

Description:
LOADBYTE select register 0 as the B register, load 8-bit value and convert to floating point
2 send 8-bit value
FDIV divide DegC by register 0

To get the degrees in Fahrenheit we will use the formula F = C * 1.8 + 32. Since 1.8 and 32 are constant values,
they would normally be loaded once in the initialization section of your program and used later in the main
program. The value 1.8 is loaded by using the ATOF (ASCII to float) instruction as follows:

Fpu.write(F1_8, Fpu.ATOF);
Fpu.writeString("1.8");
Fpu.write(Fpu.FSET);

Description:
F1_8 select F1_8 as the A register
ATOF select register 0 as the B register, load string and convert to floating point
"1.8" send zero-terminated string
FSET set F1_8 to the value in register 0

The value 32 is loaded using the LOADBYTE instruction as follows:

Fpu.write(F32, Fpu.LOADBYTE, 32, Fpu.FSET);

Description:
F32 select F32 as the A register
LOADBYTE select register 0 as the B register, load 8-bit value and convert to floating point
32 send 8-bit value
FSET set F32 to the value in register 0

Now using these constant values we calculate the degrees in Fahrenheit as follows:

Fpu.write(DegF, Fpu.FSET+DegC, Fpu.FMUL+F1_8, Fpu.FADD+F32);

 Tutorial Example

Micromega Corporation 7 Using uM-FPU with the Javelin Stamp

Description:
DegF select DegF as the A register
FSET+DegC set DegF = DegC
FMUL+F1_8 multiply DegF by 1.8
FADD+F32 add 32.0 to DegF

Now we print the results. The Fpu.floatFormat method is used to convert a floating point value to a
formatted string. The first parameter selects the uM-FPU register, and the second parameter specifies the
desired format. The tens digit is the total number of characters to display, and the ones digit is the number of
digits after the decimal point. The DS1620 has a maximum temperature of 125° Celsius and one decimal point
of precision, so we’ll use a format of 51. The following example prints the temperature in degrees Fahrenheit.

System.out.println(Fpu.floatFormat(DegF, 51));

Sample code for this tutorial and a wiring diagram for the DS1620 are shown at the end of this document. The
file demo1.java is also included with the support software. There is a second file called demo2.java that extends
this demo to include minimum and maximum temperature calculations. If you have a DS1620 you can wire up
the circuit and try out the demos.

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 8 Using uM-FPU with the Javelin Stamp

Using the uM-FPU Javelin Stamp Packages

Two packages are provided to handle the communication between the Javelin Stamp and the uM-FPU V2
floating point coprocessor, using either a SPI or I2C interface. They are located as follows:

~\lib\com\micromegacorp\math\v2-spi SPI interface
~\lib\com\micromegacorp\math\v2-i2c I2C interface

Each package contains the Fpu class which is commented to provide API documentation using Javadoc. One
of the following statements should be added to any class that uses the uM-FPU V2 math package.

package com.micromegacorp.math.v2-spi;
 or
package com.micromegacorp.math.v2-i2c;

With the exception of the interface specific form of the reset method, all methods are the same for the SPI
and I2C interface, so user programs can be developed using code that is compatible with either interface. The
user selects which interface to use by specifying the appropriate package as shown above. All of the device
specific code is handled by the Fpu class.

Fpu.reset
In order to ensure that the Javelin Stamp and the uM-FPU coprocessor are synchronized, a reset call must be
done at the start of every program. The Fpu.reset method resets the uM-FPU, confirms communications,
and returns true if successful, or false if the reset fails. An example of a typical reset is as follows:

if (!Fpu.reset()) {
 System.out.println("uM-FPU not detected.");
 return;
}

The version number of the support software and uM-FPU chip can be displayed with the following statement:

System.out.println(Fpu.version());

The uM-FPU registers are reset to the special value NaN (Not a Number) equal to the hexadecimal value
7FC00000.

Fpu.startWrite
This method is called to start all write transfers.

Fpu.startRead
This method is called to start all read transfers.

Fpu.stop
This method is called to stop a write or read transfer. If a read transfer begins immediately after a write transfer,
the Fpu.stop is not required. It is also not required if the Fpu.wait, fpu.floatformat, or
Fpu.longFormat methods are called, since these methods call Fpu.stop internally.

Fpu.wait
This method must be called before issuing any read instruction. It waits until the uM-FPU is ready and the 32-
byte instruction buffer is empty.

Fpu.wait();

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 9 Using uM-FPU with the Javelin Stamp

Fpu.startWrite();
Fpu.write(Fpu.SELECTA, Fpu.XOP, Fpu.READWORD);
int dataWord = Fpu.readWord();

Description:

 wait for the uM-FPU to be ready
 send the READWORD instruction
 read a word value and store it in the variable dataWord

The uM-FPU V2 has a 32 byte instruction buffer. In most cases, data will be read back before 32 bytes have
been sent to the uM-FPU, but if a calculation requires more than 32 bytes to be sent to the uM-FPU, an
Fpu.wait call should be made at least every 32 bytes to ensure that the instruction buffer doesn’t overflow.

Fpu.write
This method is used to send instructions and data to the uM-FPU. Up to four 8-bit values can be passed as
parameters. A Fpu.startWrite call must be made at the start of a write transfer, before the first
Fpu.write call is made.

Fpu.writeWord
This method sends a 16 bit value to the uM-FPU.

Fpu.writeString
This method sends a string to the uM-FPU followed by a zero byte to terminate the string.

Fpu.read
This method is used to read 8 bits of data from the uM-FPU.

Fpu.readWord
This method is used to read a 16 bits of data from the uM-FPU.

Fpu.read32
This method is used to read a 32 bits of data from the uM-FPU. The result is stored in two consecutive elements
of an integer array. In most applications this routine is not required, since 32-bit floating point or long integer
values are normally left in the uM-FPU registers.

Fpu.readString
This method is used to read a zero terminated string from the uM-FPU. The Fpu.floatFormat,
Fpu.longFormat, and Fpu.version methods use this method to return the string. It is rarely called
directly by user code.

Fpu.version
This method returns the uM-FPU version string.

Fpu.floatFormat
The floating point value contained in a uM-FPU register is returned as a formatted string. The format parameter
is used to specify the desired format. The tens digit specifies the total number of characters to display and the
ones digit specifies the number of digits after the decimal point. If the value is too large for the format specified,
then asterisks will be displayed. If the number of digits after the decimal points is zero, no decimal point will be
displayed. Examples of the display format are as follows:

Value in A register format Display format
123.567 61 (6.1) 123.6

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 10 Using uM-FPU with the Javelin Stamp

123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

If the format parameter is omitted, or has a value of zero, the default format is used. Up to eight significant
digits will be displayed if required. Very large or very small numbers are displayed in exponential notation.
The length of the displayed value is variable and can be from 3 to 12 characters in length. The special cases of
NaN (Not a Number), +Infinity, -Infinity, and -0.0 are handled. Examples of the display format are as follows:

1.0 NaN 0.0
1.5e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

Fpu.longFormat
The long integer value contained in a uM-FPU register displayed as a formatted string. The format parameter is
used to specify the desired format. A value between 0 and 15 specifies the width of the display field for a signed
long integer. The number is displayed right justified. If 100 is added to the format value the value is displayed
as an unsigned long integer. If the value is larger than the specified width, asterisks will be displayed. If the
width is specified as zero, the length will be variable. Examples of the display format are as follows:

Value in register A format Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

If the format parameter is omitted, or has a value of zero, the default format is used. The displayed value can
range from 1 to 11 characters in length. Examples of the display format are as follows:

1
500000
-3598390

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 11 Using uM-FPU with the Javelin Stamp

Loading Data Values to the uM-FPU
There are several instructions for loading integer values to the uM-FPU. These instructions take an integer value
as an argument, stores the value in register 0, converts it to floating point, and selects register 0 as the B
register. This allows the loaded value to be used immediately by the next instruction.

LOADBYTE Load 8-bit signed integer and convert to floating point
LOADUBYTE Load 8-bit unsigned integer and convert to floating point
LOADWORD Load 16-bit signed integer and convert to floating point
LOADUWORD Load 16-bit unsigned integer and convert to floating point

For example, to calculate Result = Result + 20.0

Fpu.write(Result, Fpu.LOADBYTE, 20, Fpu.FADD);

Description:
Result select Result as the A register
LOADBYTE select register 0 as the B register, load 8-bit value and convert to floating point
20 send 8-bit value
FADD add register 0 to Result

The following instructions take integer value as an argument, stores the value in register 0, converts it to a long
integer, and selects register 0 as the B register.

LONGBYTE Load 8-bit signed integer and convert to 32-bit long signed integer
LONGUBYTE Load 8-bit unsigned integer and convert to 32-bit long unsigned integer
LONGWORD Load 16-bit signed integer and convert to 32-bit long signed integer
LONGUWORD Load 16-bit unsigned integer and convert to 32-bit long unsigned integer

For example, to calculate Total = Total / 100

Fpu.write(Total, Fpu.XOP, Fpu.LONGBYTE, 100);
Fpu.write(Fpu.LADD);

Description:
Total select Total as the A register
XOP, LONGBYTE select register 0 as the B register, load 8-bit value and convert to long integer
100 send 8-bit value
LDIV divide Total by register 0

There are several instructions for loading commonly used constants. These instructions load the constant value
to register 0, and select register 0 as the B register.

LOADZERO Load the floating point value 0.0 (or long integer 0)
LOADONE Load the floating point value 1.0
LOADE Load the floating point value of e (2.7182818)
LOADPI Load the floating point value of pi (3.1415927)

For example, to set Result = 0.0

Fpu.write(Result, Fpu.XOP, Fpu.LOADZERO, Fpu.FSET);

Description:
Result select Result as the A register
XOP, LOADZERO select register 0 as the B register, load 0.0
FSET set Result to the value in register 0

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 12 Using uM-FPU with the Javelin Stamp

There are two instructions for loading 32-bit floating point values to a specified register. This is one of the more
efficient ways to load floating point constants, but requires knowledge of the internal representation for floating
point numbers (see Appendix B). A handy utility program called uM-FPU Converter is available to convert
between floating point strings and 32-bit hexadecimal values.

FWRITEA Write 32-bit floating point value to specified register
FWRITAB Write 32-bit floating point value to specified register

For example, to set Angle = 20.0 (the floating point representation for 20.0 is 0x41A00000)

Fpu.write(Fpu.FWRITEA+Angle);
Fpu.writeWord((short)0x41A0);
Fpu.writeWord((short)0x0000);

Description:
FWRITEA+Angle select Angle as the A register and load 32-bit value
0x41,0xA0,0x00,0x00 send 32-bit value

There are two instructions for loading 32-bit long integer values to a specified register.

LWRITEA Write 32-bit long integer value to specified register
LWRITAB Write 32-bit long integer value to specified register

For example, to set Total = 5000000

Fpu.write(Fpu.XOP, Fpu.LWRITEA+Total);
Fpu.writeWord((short)(5000000 >> 16));
Fpu.writeWord((short)(5000000 & 0xFFFF));

Description:

XOP, LWRITEA+Total select Total as the A register and load 32-bit value
(short)(5000000 >> 16) send high 16 bits of 32-bit value
(short)(5000000 & 0xFFFF) send low 16 bits of 32-bit value

There are two instructions for converting strings to floating point or long integer values.

ATOF Load ASCII string and convert to floating point
ATOL Load ASCII string and convert to long integer

For example, to set Angle = 1.5885

Fpu.write(Angle, Fpu.ATOF);
Fpu.writeString("1.5885");
Fpu.write(Fpu.FSET);

Description:
Angle select Angle as the A register
ATOF select register 0 as the B register, load string and convert to floating point
writeString("1.5885") send zero-terminated string
FSET set Angle to the value in register 0

For example, to set Total = 500000

Fpu.write(Total, Fpu.ATOL);
Fpu.writeString("5000000");
Fpu.write(Fpu.FSET);

Description:
Total select Total as the A register

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 13 Using uM-FPU with the Javelin Stamp

ATOL select register 0 as the B register, load string and convert to floating point
"5000000" send zero-terminated string
FSET set Total to the value in register 0

The fastest operations occur when the uM-FPU registers are already loaded with values. In time critical portions
of code floating point constants should be loaded beforehand to maximize the processing speed in the critical
section. With 15 registers available for storage on the uM-FPU, it is often possible to preload all of the required
constants. In non-critical sections of code, data and constants can be loaded as required.

Reading Data Values from the uM-FPU
There are two instructions for reading 32-bit floating point values from the uM-FPU.

READFLOAT Reads a 32-bit floating point value from the A register.
FREAD Reads a 32-bit floating point value from the specified register.

The following commands read the floating point value from the A register

Fpu.wait();
Fpu.startWrite();
Fpu.write(Fpu.XOP, Fpu.READFLOAT);
Fpu.read32(array);

Description:
 wait for the uM-FPU to be ready
 send the READFLOAT instruction
 read the 32-bit value and store it in the first two words of an integer array

There are four instructions for reading integer values from the uM-FPU.

READBYTE Reads the lower 8 bits of the value in the A register.
READWORD Reads the lower 16 bits of the value in the A register.
READLONG Reads a 32-bit long integer value from the A register.
LREAD Reads a 32-bit long integer value from the specified register.

The following commands read the lower 8 bits from the A register

Fpu.wait();
Fpu.startWrite();
Fpu.write(Fpu.XOP, Fpu.READBYTE);
dataByte = Fpu.read ();

Description:
 wait for the uM-FPU to be ready
 send the READBYTE instruction
 read a byte value and store it in the variable dataByte

Comparing and Testing Floating Point Values
A floating point value can be zero, positive, negative, infinite, or Not a Number (which occurs if an invalid
operation is performed on a floating point value). To check the status of a floating point number the FSTATUS
instruction is sent, and the status byte is returned. The Fpu class has a constant defined for each of the status
bits as follows:

ZERO_FLAG Zero status bit (0-not zero, 1-zero)
SIGN_FLAG Sign status bit (0-positive, 1-negative)
NAN_FLAG Not a Number status bit (0-valid number, 1-NaN)
INFINITY_FLAG Infinity status bit (0-not infinite, 1-infinite)

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 14 Using uM-FPU with the Javelin Stamp

For example:

Fpu.wait();
Fpu.startWrite();
Fpu.write(Fpu.FSTATUS);
status = Fpu.read();
if ((status & Fpu.ZERO_FLAG) != 0)

System.out.println("Result is Zero");
else if ((status & Fpu.SIGN_FLAG) != 0)

System.out.println("Result is Negative");

The FCOMPARE instruction is used to compare two floating point values. The status bits are set for the results
of the operation A – B (The selected A and B registers are not modified). For example, the following commands
compare the values in registers Value1 and Value2.

Fpu.wait();
Fpu.startWrite();
Fpu.write(Value1, Fpu.SELECTB+Value2, Fpu.FCOMPARE);
status = Fpu.read();
if ((status & Fpu.ZERO_FLAG) != 0)

System.out.println("Value1 = Value2");
else if ((status & Fpu.SIGN_FLAG) != 0)

System.out.println("Value1 < Value2");
else

System.out.println("Value1 > Value2");

Comparing and Testing Long Integer Values
A long integer value can be zero, positive, or negative. To check the status of a long integer number the
LSTATUS instruction is sent, and the returned byte is stored in the status variable. A bit definition is
provided for each status bit in the status variable. They are as follows:

ZERO_FLAG Zero status bit (0-not zero, 1-zero)
SIGN_FLAG Sign status bit (0-positive, 1-negative)

For example:

Fpu.wait();
Fpu.startWrite();
Fpu.write(Fpu.XOP, Fpu.LSTATUS);
status = Fpu.read();
if ((status & Fpu.ZERO_FLAG) != 0)

System.out.println("Result is Zero");
else if ((status & Fpu.SIGN_FLAG) != 0)

System.out.println("Result is Negative");

The LCOMPARE and LUCOMPARE instructions are used to compare two long integer values. The status bits are
set for the results of the operation A – B (The selected A and B registers are not modified). LCOMPARE does a
signed compare and LUCOMPARE does an unsigned compare. For example, the following commands compare
the values in registers Value1 and Value2.

Fpu.wait();
Fpu.startWrite();
Fpu.write(Value1, Fpu.SELECTB+Value2, Fpu.XOP, Fpu.LCOMPARE);
status = Fpu.read();
if ((status & Fpu.ZERO_FLAG) != 0)

System.out.println("Value1 = Value2");
else if ((status & Fpu.SIGN_FLAG) != 0)

System.out.println("Value1 < Value2");
else

System.out.println("Value1 > Value2");

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 15 Using uM-FPU with the Javelin Stamp

Left and Right Parenthesis
Mathematical equations are often expressed with parenthesis to define the order of operations. For example
Y = (X-1) / (X+1). The LEFT and RIGHT parenthesis instructions provide a convenient means of allocating
temporary values and changing the order of operations.

When a LEFT parenthesis instruction is sent, the current selection for the A register is saved and the A register
is set to reference a temporary register. Operations can now be performed as normal with the temporary register
selected as the A register. When a RIGHT parenthesis instruction is sent, the current value of the A register is
copied to register 0, register 0 is selected as the B register, and the previous A register selection is restored. The
value in register 0 can be used immediately in subsequent operations. Parenthesis can be nested for up to five
levels. In most situations, the user’s code does not need to select the A register inside parentheses since it is
selected automatically by the LEFT and RIGHT parentheses instructions.

In the following example the equation Z = sqrt(X**2 + Y**2) is calculated. Note that the original values of X
and Y are retained.

final static int Xvalue = 1 // X value (uM-FPU register 1)
final static int Yvalue = 2 // Y value (uM-FPU register 2)
final static int Zvalue = 3 // Z value (uM-FPU register 3)

Fpu.startWrite();
Fpu.write(Zvalue, Fpu.FSET+Xvalue, Fpu.FMUL+Xvalue);
Fpu.write(Fpu.XOP, Fpu.LEFT, Fpu.FSET+Yvalue, Fpu.FMUL+Yvalue);
Fpu.write(Fpu.XOP, Fpu.RIGHT, Fpu.FADD, Fpu.SQRT);

Description:
Zvalue select Zvalue as the A register
FSET+Xvalue Zvalue = Xvalue
FMUL+Xvalue Zvalue = Zvalue * Xvalue (i.e. X**2)
XOP, LEFT save current A register selection, select temporary register as A register (temp)
FSET+Yvalue temp = Yvalue
FMUL+Yvalue temp = temp * Yvalue (i.e. Y**2)
XOP, RIGHT store temp to register 0, select Zvalue as A register (previously saved selection)
FADD add register 0 to Zvalue (i.e. X**2 + Y**2)
SQRT take the square root of Zvalue

The following example shows Y = 10 / (X + 1):

Fpu.startWrite();
Fpu.write(Yvalue, Fpu.LOADBYTE, 10, Fpu.FSET);
Fpu.write(Fpu.XOP, Fpu.LEFT, Fpu.FSET+Xvalue);
Fpu.write(Fpu.XOP, Fpu.LOADONE, Fpu.FADD);
Fpu.write(Fpu.XOP, Fpu.RIGHT, Fpu.FDIV);

Description:

Yvalue select Yvalue as the A register
LOADBYTE, 10 load the value 10 to register 0, convert to floating point, select register 0 as the B
register
FSET Yvalue = 10.0
XOP, LEFT save current A register selection, select temporary register as A register (temp)
FSET+Xvalue temp = Xvalue
XOP, LOADONE load 1.0 to register 0 and select register 0 as the B register
FADD temp = temp + 1 (i.e. X+1)
XOP, RIGHT store temp to register 0, select Yvalue as A register (previously saved selection)
FDIV divide Yvalue by the value in register 0

 Using the uM-FPU Javelin Stamp Packages

Micromega Corporation 16 Using uM-FPU with the Javelin Stamp

Further Information
The following documents are also available:

uM-FPU V2 Datasheet provides hardware details and specifications
uM-FPU V2 Instruction Reference provides detailed descriptions of each instruction
uM-FPU Application Notes various application notes and examples

Check the Micromega website at www.micromegacorp.com

 Sample Code

Micromega Corporation 17 Using uM-FPU with the Javelin Stamp

DS1620 Connections for Demo 1

Sample Code for Tutorial (Demo1.java)

import com.micromegacorp.math.v2_spi.*; // (use one of the uM-FPU packages)
//import com.micromegacorp.math.v2_i2c.*;
import stamp.core.*;
import stamp.peripheral.sensor.temperature.DS1620;

// This program demonstrates how to use the uM-FPU V2 floating point coprocessor
// connected to the Javelin Stamp using either a 2-wire SPI or I2C interface.
// It takes temperature readings from a DS1620 digital thermometer, converts
// them to floating point and displays them in degrees Celsius and degrees
// Fahrenheit.
public class Demo1 {

 final static int DS_DATA = CPU.pin10; // DS1620 data pin
 final static int DS_CLK = CPU.pin11; // DS1620 clock pin
 final static int DS_RST = CPU.pin12; // DS1620 reset/enable pin

 //-------------------- uM-FPU register definitions --------------------------

 final static int DegC = 1; // degrees Celsius
 final static int DegF = 2; // degrees Fahrenheit
 final static int F1_8 = 3; // constant 1.8
 final static int F32 = 4; // constant 32.0

 //-------------------- main routine ---

 public static void main() {
 int rawTemp;

 // display program name
 System.out.println("\u0010Demo1");

 // reset the uM-FPU and print version string
 if (!Fpu.reset()) {
 System.out.println("uM-FPU not responding.");
 return;
 }
 else
 System.out.println(Fpu.version());

 // get a DS1620 object and initialize
 DS1620 ds = new DS1620(DS_DATA, DS_CLK, DS_RST);

 Sample Code

Micromega Corporation 18 Using uM-FPU with the Javelin Stamp

 CPU.delay(10000);

 // store constant values (1.8 and 32.0)
 Fpu.startWrite();
 Fpu.write(F1_8, Fpu.ATOF);
 Fpu.writeString("1.8");
 Fpu.write(Fpu.FSET);
 Fpu.write(F32, Fpu.LOADBYTE, 32, Fpu.FSET);
 Fpu.stop();

 // loop forever, read and display temperature
 while (true) {
 // get temperature reading from DS1620
 rawTemp = ds.getTempRaw();

 // send to uM-FPU and convert to floating point
 Fpu.startWrite();
 Fpu.write(DegC, Fpu.LOADWORD);
 Fpu.writeWord(rawTemp);
 Fpu.write(Fpu.FSET);

 // divide by 2 to get degrees Celsius
 Fpu.write(Fpu.LOADBYTE, 2, Fpu.FDIV);

 // degF = degC * 1.8 + 32
 Fpu.write(DegF, Fpu.FSET+DegC, Fpu.FMUL+F1_8, Fpu.FADD+F32);
 Fpu.stop();

 // display degrees Celsius
 System.out.print("\n\rDegrees C: ");
 System.out.println(Fpu.floatFormat(DegC, 51));

 // display degrees Fahrenheit
 System.out.print("Degrees F: ");
 System.out.println(Fpu.floatFormat(DegF, 51));

 // delay about 2 seconds, then get the next reading
 CPU.delay(21000);
 }
 }
} // end class

 Appendix A – Instruction Summary

Micromega Corporation 19 Using uM-FPU with the Javelin Stamp

Appendix A
uM-FPU V2 Instruction Summary (Javelin Stamp definitions)

Opcode
Name

Data
Type

O
pcode Arguments Returns B Reg Description

SELECTA 0x Select A register
SELECTB 1x x Select B register

FWRITEA Float 2x yyyy zzzz Select A register, Write floating point
value to A register

FWRITEB Float 3x yyyy zzzz x Select B register, Write floating point
value to B register

FREAD Float 4x yyyy zzzz Read register
FSET/LSET Either 5x Select B register, A = B
FADD Float 6x x Select B register, A = A + B
FSUB Float 7x x Select B register, A = A - B
FMUL Float 8x x Select B register, A = A * B
FDIV Float 9x x Select B register, A = A / B
LADD Long Ax x Select B register, A = A + B
LSUB Long Bx x Select B register, A = A -B
LMUL Long Cx x Select B register, A = A * B

LDIV Long Dx x Select B register, A = A / B
Remainder stored in register 0

SQRT Float E0 A = sqrt(A)
LOG Float E1 A = ln(A)
LOG10 Float E2 A = log(A)
EXP Float E3 A = e ** A
EXP10 Float E4 A = 10 ** A
SIN Float E5 A = sin(A) radians
COS Float E6 A = cos(A) radians
TAN Float E7 A = tan(A) radians
FLOOR Float E8 A = nearest integer <= A
CEIL Float E9 A = nearest integer >= A
ROUND Float EA A = nearest integer to A
NEGATE Float EB A = -A
ABS Float EC A = |A|
INVERSE Float ED A = 1 / A

DEGREES Float EE Convert radians to degrees
A = A / (PI / 180)

RADIANS Float EF Convert degrees to radians
A = A * (PI / 180)

SYNC F0 5C Synchronization

FLOAT Long F1 0 Copy A to register 0
Convert long to float

FIX Float F2 0 Copy A to register 0
Convert float to long

FCOMPARE Float F3 ss Compare A and B
(floating point)

LOADBYTE Float F4 bb 0 Write signed byte to register 0
Convert to float

LOADUBYTE Float F5 bb 0 Write unsigned byte to register 0
Convert to float

LOADWORD Float F6 wwww 0 Write signed word to register 0
Convert to float

LOADUWORD Float F7 wwww 0 Write unsigned word to register 0
Convert to float

 Appendix A – Instruction Summary

Micromega Corporation 20 Using uM-FPU with the Javelin Stamp

READSTR F8 aa … 00 Read zero terminated string from
string buffer

ATOF Float F9 aa … 00 0 Convert ASCII to float
Store in register 0

FTOA Float FA ff Convert float to ASCII
Store in string buffer

ATOL Long FB aa … 00 0 Convert ASCII to long
Store in register 0

LTOA Long FC ff Convert long to ASCII
Store in string buffer

FSTATUS Float FD ss Get floating point status of A

XOP FE Extended opcode prefix (extended
opcodes are listed below)

NOP FF No Operation

FUNCTION

FE0n
FE1n
FE2n
FE3n

 0

User defined functions 0-15
User defined functions 16-31
User defined functions 32-47
User defined functions 48-63

IF_FSTATUSA Float FE80 ss Execute user function code if
FSTATUSA conditions match

IF_FSTATUSB Float FE81 ss Execute user function code if
FSTATUSB conditions match

IF_FCOMPARE Float FE82 ss Execute user function code if
FCOMPARE conditions match

IF_LSTATUSA Long FE83 ss Execute user function code if
LSTATUSA conditions match

IF_LSTATUSB Long FE84 ss Execute user function code if
LSTATUSB conditions match

IF_LCOMPARE Long FE85 ss Execute user function code if
LCOMPARE conditions match

IF_LUCOMPARE Long FE86 ss Execute user function code if
LUCOMPARE conditions match

IF_LTST Long FE87 ss Execute user function code if
LTST conditions match

TABLE Either FE88 Table Lookup (user function)

POLY Float FE89 Calculate nth degree polynomial
(user function)

READBYTE Long FE90 bb Get lower 8 bits of register A
READWORD Long FE91 wwww Get lower 16 bits of register A
READLONG Long FE92 yyyy zzzz Get long integer value of register A
READFLOAT Float FE93 yyyy zzzz Get floating point value of register A
LINCA Long FE94 A = A + 1
LINCB Long FE95 B = B + 1
LDECA Long FE96 A = A - 1
LDECB Long FE97 B = B - 1
LAND Long FE98 A = A AND B
LOR Long FE99 A = A OR B
LXOR Long FE9A A = A XOR B
LNOT Long FE9B A = NOT A
LTST Long FE9C ss Get the status of A AND B
LSHIFT Long FE9D A = A shifted by B bit positions
LWRITEA Long FEAx yyyy zzzz Write register and select A
LWRITEB Long FEBx yyyy zzzz x Write register and select B
LREAD Long FECx yyyy zzzz Read register

LUDIV Long FEDx x Select B register, A = A / B (unsigned)
Remainder stored in register 0

POWER Float FEE0 A = A raised to the power of B
ROOT Float FEE1 A = the Bth root of A

 Appendix A – Instruction Summary

Micromega Corporation 21 Using uM-FPU with the Javelin Stamp

MIN Float FEE2 A = minimum of A and B
MAX Float FEE3 A = maximum of A and B

FRACTION Float FEE4 0 Load Register 0 with the fractional
part of A

ASIN Float FEE5 A = asin(A) radians
ACOS Float FEE6 A = acos(A) radians
ATAN Float FEE7 A = atan(A) radians
ATAN2 Float FEE8 A = atan(A/B)

LCOMPARE Long FEE9 ss Compare A and B
(signed long integer)

LUCOMPARE Long FEEA ss Compare A and B
(unsigned long integer)

LSTATUS Long FEEB ss Get long status of A
LNEGATE Long FEEC A = -A
LABS Long FEED A = |A|
LEFT FEEE Left parenthesis
RIGHT FEEF 0 Right parenthesis
LOADZERO Float FEF0 0 Load Register 0 with Zero
LOADONE Float FEF1 0 Load Register 0 with 1.0
LOADE Float FEF2 0 Load Register 0 with e
LOADPI Float FEF3 0 Load Register 0with pi

LONGBYTE Long FEF4 bb 0 Write signed byte to register 0
Convert to long

LONGUBYTE Long FEF5 bb 0 Write unsigned byte to register 0
Convert to long

LONGWORD Long FEF6 wwww 0 Write signed word to register 0
Convert to long

LONGUWORD Long FEF7 wwww 0 Write unsigned word to register 0
Convert to long

IEEEMODE FEF8 Set IEEE mode (default)
PICMODE FEF9 Set PIC mode
CHECKSUM FEFA 0 Calculate checksum for uM-FPU code
BREAK FEFB Debug breakpoint
TRACEOFF FEFC Turn debug trace off
TRACEON FEFD Turn debug trace on
TRACESTR FEFE aa … 00 Send debug string to trace buffer
VERSION FEFF Copy version string to string buffer

Notes:

Data Type data type required by opcode
Opcode hexadecimal opcode value
Arguments additional data required by opcode
Returns data returned by opcode
B Reg value of B register after opcode executes
x register number (0-15)
n function number (0-63)
yyyy most significant 16 bits of 32-bit value
zzzz least significant 16 bits of 32-bit value
ss status byte
bb 8-bit value
wwww 16-bit value
aa … 00 zero terminated ASCII string

 Appendix B – Floating Point Numbers

Micromega Corporation 22 Using uM-FPU with the Javelin Stamp

Appendix B
Floating Point Numbers

Floating point numbers can store both very large and very small values by “floating” the window of precision to
fit the scale of the number. Fixed point numbers can’t handle very large or very small numbers and are prone to
loss of precision when numbers are divided. The representation of floating point numbers used by the uM-FPU
is defined by the IEEE 754 standard.
The range of numbers that can be handled by the uM-FPU is approximately ± 1038.53.
.
IEEE 754 32-bit Floating Point Representation

IEEE floating point numbers have three components: the sign, the exponent, and the mantissa. The sign
indicates whether the number is positive or negative. The exponent has an implied base of two. The mantissa is
composed of the fraction.

The 32-bit IEEE 754 representation is as follows:

Exponent MantissaS

31 30 23 22 0

Sign Bit (S)
The sign bit is 0 for a positive number and 1 for a negative number.

Exponent
The exponent field is an 8-bit field that stores the value of the exponent with a bias of 127 that allows
it to represent both positive and negative exponents. For example, if the exponent field is 128, it
represents an exponent of one (128 – 127 = 1). An exponent field of all zeroes is used for denormalized
numbers and an exponent field of all ones is used for the special numbers +infinity, -infinity and Not-
a-Number (described below).

Mantissa
The mantissa is a 23-bit field that stores the precision bits of the number. For normalized numbers
there is an implied leading bit equal to one.

Special Values

Zero

A zero value is represented by an exponent of zero and a mantissa of zero. Note that +0 and –0
are distinct values although they compare as equal.

Denormalized

If an exponent is all zeros, but the mantissa is non-zero the value is a denormalized number.
Denormalized numbers are used to represent very small numbers and provide for an extended
range and a graceful transition towards zero on underflows. Note: The uM-FPU does not support
operations using denormalized numbers.

Infinity
The values +infinity and –infinity are denoted with an exponent of all ones and a fraction of all
zeroes. The sign bit distinguishes between +infinity and –infinity. This allows operations to
continue past an overflow. A nonzero number divided by zero will result in an infinity value.

 Appendix B – Floating Point Numbers

Micromega Corporation 23 Using uM-FPU with the Javelin Stamp

Not A Number (NaN)
The value NaN is used to represent a value that does not represent a real number. An operation
such as zero divided by zero will result in a value of NaN. The NaN value will flow through any
mathematical operation. Note: The uM-FPU initializes all of its registers to NaN at reset, therefore
any operation that uses a register that has not been previously set with a value will produce a result
of NaN.

Some examples of IEEE 754 32-bit floating point values displayed as Javelin Stamp hex constants are as
follows:

(short)0x0000, (short)0x0000 // 0.0
(short)0x3DCC, (short)0xCCCD // 0.1
(short)0x3F00, (short)0x0000 // 0.5
(short)0x3F40, (short)0x0000 // 0.75
(short)0x3F7F, (short)0xF972 // 0.9999
(short)0x3F80, (short)0x0000 // 1.0
(short)0x4000, (short)0x0000 // 2.0
(short)0x402D, (short)0xF854 // 2.7182818 (e)
(short)0x4049, (short)0x0FDB // 3.1415927 (pi)
(short)0x4120, (short)0x0000 // 10.0
(short)0x42C8, (short)0x0000 // 100.0
(short)0x447A, (short)0x0000 // 1000.0
(short)0x449A, (short)0x522B // 1234.5678
(short)0x4974, (short)0x2400 // 1000000.0
(short)0x8000, (short)0x0000 // -0.0
(short)0xBF80, (short)0x0000 // -1.0
(short)0xC120, (short)0x0000 // -10.0
(short)0xC2C8, (short)0x0000 // -100.0
(short)0x7FC0, (short)0x0000 // NaN (Not-a-Number)
(short)0x7F80, (short)0x0000 // +inf
(short)0xFF80, (short)0x0000 // -inf

